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ABSTRACT
Android malware are often created by injecting malicious
payloads into benign applications. They employ code and
string obfuscation techniques to hide their presence from
antivirus scanners. Recent studies have shown that common
antivirus software and static analysis tools are not resilient
to such obfuscation techniques. To address this problem, we
develop a robust fingerprinting approach that can deal with
complex obfuscation with a high degree of accuracy.

Our approach, called OpSeq , scores similarity as a func-
tion of normalized opcode sequences found in sensitive func-
tional modules as well as app permission requests. This com-
bination of structural and behavioral features results in a
distinctive fingerprint for a malware sample, thereby improv-
ing our model’s overall recall rate. We tested our prototype
on 1,192 known malware samples belonging to 25 different
families, 359 benign apps, and 207 new obfuscated malware
variants. The empirical results show that OpSeq can cor-
rectly detect known malware with an F-Score of 98%.

CCS Concepts
•Security and privacy→Malware and its mitigation;
•Software and its engineering→ Automated static anal-
ysis; •Information systems → Similarity measures;

Keywords
Android, Malware, Fingerprinting, Static Analysis, Opcode-
Sequence, Obfuscation

1. INTRODUCTION
Signature-based malware detection systems have long been

used in identifying known malicious samples. On Android
systems, malware is often introduced by repackaging benign
applications with obfuscated malicious payloads, via a va-
riety of transformations. These forms of obfuscation have
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been shown to trick COTS antivirus products [13, 19] and
by extension the methodologies of many other Android re-
search tools. Most of these common tools use algorithms
that search application code for strings or other signatures,
which can easily be subverted. Our aim is to develop a bet-
ter system that can detect known malware, which have been
obfuscated and repackaged within a new application.

In this work we present OpSeq–a new malware-variant de-
tection approach that is resilient against common obfusca-
tion techniques, including reflection, encryption, code re-
ordering and junk insertion. Given a malicious application,
OpSeq performs static analysis of the application code and
identifies functional level components (Java methods) re-
ferred to as sensitive functional modules. These modules
invoke vital APIs such as reflective, permission-guarded, re-
source/data access and network/file system activities. Based
on the characterization of Android malware in well-known
existing work [23], these sensitive APIs open a channel by
which malicious apps can manipulate a victim’s device.

OpSeq extracts the components from a known sample and
creates corresponding signatures, which are used to search
for similar components in target applications. Target appli-
cations are then classified as malicious or benign based on
this evaluation. This approach is a significant improvement
over existing work that targets opcode-sequence similarity
[10, 22, 14], in that it filters out irrelevant application code
(reducing noise in signatures) and focuses only on a small
portion of code that has high potential to contain malicious
code (making signatures more accurate). As a secondary
feature, we use the list of requested permissions to improve
detection accuracy, as app variants tend to have very similar
permission sets.

Contribution: The main contribution of this work is the
development of OpSeq , which achieves the following specific
goals by design:

1. Accuracy: OpSeq achieves a high-level of accuracy both
in classifying malicious and benign apps and in further
sub-categorizing malicious apps into their distinctive
individual families.

2. Resilience: OpSeq is effective against simple and com-
plex obfuscation techniques commonly found in mali-
cious apps.

3. Efficiency: OpSeq takes only few seconds (on average)
to process an app, making it an efficient and scalable
tool.



We use two datasets to evaluate OpSeq thoroughly. The
first dataset has 1,551 Android applications in total, con-
sisting of 1,192 malicious apps from the Android Malware
Genome Project [23] and 359 benign apps downloaded from
Google Play. Our experimental results (on the dataset) show
that OpSeq detects variants of known malware with an F-
Score of 97.5%, 98% recall, and 97% precision. The second
dataset has 207 malicious apps employing four obfuscation
techniques: reflection, encryption, code reordering and junk
insertion. We use two Java bytecode obfuscators to create
the dataset, i.e., DroidChameleon [13] and SandMark [11].
Fourteen COTS antivirus tools, DroidLegacy (a state-of the
art Android malware detection tool), and OpSeq are tested
with the dataset. The results show that OpSeq outperforms
the other tools by an average margin of 35%.

The rest of the paper is organized as follows: Section 2
presents a summary of related work; Section 3 provides an
overview of our design and algorithms; Section 4 presents the
implementation and evaluation of the proposed approach;
Section 5 contains a discussion of our results and also dis-
cusses limitation of our work; Section 6 summarizes our find-
ings and conclusions.

2. RELATED WORK
The first large-scale study of Android malware–the An-

droid Malware Genome Project–was carried out by Zhou and
Jiang [23]. Their work was aimed at characterizing existing
Android malware but they did not detail their analysis and
classification methodology. However, the corpus and char-
acterization information they provided became the basis for
a lot of follow up research, including ours. Their work iden-
tified that 86% of the malware is found as repackaged apps.

2.1 Opcode-sequence similarity
Santos et al. [14] developed a system of detecting malware

using opcode-sequence frequencies on the Intel x86 platform.
On Android, Hanna and Zhou [10, 22] developed method-
ologies for using opcode-sequences to detect repackaged ap-
plications in both primary and secondary app markets. Our
work differs from theirs in terms of goals and approach:
theirs are focused on detecting application repackaging in
general, whereas we are interested in detecting malware, in
particular. Their opcode-sequence-based detection can be
disturbed with relative ease by injecting small amounts of
noise; in contrast, we explicitly designed our approach to
deal with different obfuscation techniques. Our system nor-
malizes an opcode-sequence both on the known and target
samples before comparison, which significantly reduces the
effects of dead and junk code on our similarity measures.

For example, using the same target code snipped illus-
trated by [12] in their evaluation of Android repackaging
detection algorithms, the original sequence is altered with a
series of junk instructions to form an obfuscated version as
shown with the mnemonics in Listing 1. In the worst case,
DroidMoss [22] can take the hash of the entire sequence (i.e.,
a 4-gram). In such cases, detection can be evaded com-
pletely. Conversely, in its best case, using a 2-gram rest
point, DroidMoss can attain a maximum of ≈15% similar-
ity.

Our algorithm on the other hand first normalizes both se-
quences, then group them into 2-gram pattern, as shown in
Listing 2. The target-overlap coefficient, which gives em-
phasis to the known profile will be ≈ 67%.

Furthermore, our small structured signatures target only
sensitive functions, which can help eliminate most GUI code.
This is useful because GUI code is almost always irrelevant
for malware detection.

Listing 1: Original and obfuscated sequences
//Original sequence
invoke-static, move-result-object, const-string,

invoke-interface
//Obfuscated sequence
invoke-static, move-result-object, move-object,

const-string, move, invoke-interface, move,
move-object

Listing 2: Original and obfuscated sequences nor-
malized and grouped into 2-gram pattern by OpSeq
//Original sequence normalized
const-string, invoke-interface,invoke-static,

move-result-object

//Original sequence grouped into 2-gram pattern
const-string:invoke-interface,

invoke-interface:invoke-static,
invoke-static:move-result-object

//Obfuscated sequence normalized
const-string, invoke-interface, invoke-static, move,

move, move-object, move-object, move-result-object

//Obfuscated sequence grouped into 2-gram pattern
const-string:invoke-interface,

invoke-interface:invoke-static,
invoke-static:move, move:move, move:move-object,
move-object:move-object,
move-object:move-result-object

2.2 Semantic-based detection
Semantic-based detection uses information flows as fea-

tures to detect similarity between Android applications [3,
4, 7, 15, 17, 20, 21]. PiggyApps [21] first identifies the code
containing the main functionality (the primary module) in
legitimate apps. Then, it extracts and organizes this se-
mantic information from the module as a vantage point tree.
The resulting signatures are used to search for“piggybacked”
apps in Android markets. Apposcopy [7] provides a speci-
fication language that allows the manual creation of signa-
tures for known malware. To find similarities, it extracts
semantic features of a new app using inter-component call
graphs and performs static taint analysis.

DroidLegacy [4] is an API-based static malware detection
system that breaks an app into sub-modules. The set of API
calls made in these modules are compared against the sig-
natures of known samples. DroidAnalytics [20] uses a three-
level signature that represents API calls made from within
apps. API call sequences form signatures for methods, and
the collection of all method signatures forms a signature for
each class. The collection of class signatures then forms the
signature for the entire application. All of the techniques
discussed above can be easily circumvented with simple ob-
fuscation. Encryption alone can hinder data flow analyses
while the combination of encryption and reflection will make
it difficult to extract any meaningful information from the
application code.



2.3 Permission-based certification
Kirin [5] detects dangerous behavior in applications by

analyzing their permission requests. It uses a set of rules
that defines which permissions combination might be dan-
gerous. Another permission-based behavioral fingerprinting
is DroidRanger [24]. However, as detailed in [6], most An-
droid apps are over-privileged in general and even benign
apps have a tendency to request combinations of permis-
sions that could be considered dangerous. SCanDroid [8] is
a security certification tool that determines if specifications
in the application manifest match what is requested within
the app’s components. RiskRanker [9] provides a systematic
approach that measures the risk of dangerous behavior as-
sociated with an application based on native code, dynamic
class loading, and callback handlers. VetDroid [18] uses dy-
namic analyses to reconstruct how permissions are used to
access resources. All these techniques attempt to discover if
dangerous behavior is present, while OpSeq ’s primary goal is
to measure similarity of unknown apps against known mal-
ware.

3. DESIGN
The OpSeq architecture consists of two major components

as shown in Figure 1: feature extraction, and signature
generation. Feature extraction identifies code in sensitive
functional modules and extracts the corresponding opcode-
sequences. It also extracts the list of permissions used by
the app to gain access to system resources. The signature
generation step normalizes the sequences from feature ex-
traction, and then slices each into a small chunk of n-gram
opcodes, which constitute of the signature used for similarity
matching.

OpSeq ’s signature matching is a 3-step process, each il-
lustrated in the algorithms 1, 2, and 3 respectively. We
use a bottom-up approach consisting of three levels for sim-
ilarity detection. First, we determine matches at the op-
code level, and then their aggregate gives the similarity at
the functional level. Finally, the result of functional-level
and permission-overlap determines the final index. A sim-
ilarity score is computed at each level where a subsequent
level takes into account the score of its immediate last level,
achieving substantial improvement in the overall accuracy
of our system.

3.1 Feature extraction
In this phase, permission requests and functional opcodes

are extracted from the app’s manifest and classes.dex files,
respectively. The classes.dex file, denoted by cd, is a set
of m Java classes, jc:

cd = {jc1, jc2, . . . , jcm}.

Each Java class jck, 1 ≤ k ≤ m is made up of n functions.

jck = {fk
1 , f

k
2 , . . . , f

k
n}.

We can simplify the notation by aggregating the set of
functions in a dex file as:

cd = {{f1
1 , f

1
2 , .., f

1
n}, {f2

1 , f
2
2 , .., f

2
n}, .., {fm

1 , fm
2 , .., fm

n }}

An individual function fi consists of set of instructions
I: fi = {I1, I2, . . . , Ik}. Instructions are tuples containing
an opcode o and a (potentially empty) list of operands. For

the purposes of our analysis, we focus solely on the opcodes
and we disregard the operands. In other words, we view a
function f as a sequence of i opcodes:

f = o1, o2, . . . , ok.

To be included in the feature set, we filter the list of func-
tions based on two criteria: a) the function must invoke at
least one method from a sensitive API (a manually compiled
list of selected system APIs); and b) its opcode sequence is
not on the list of the most commonly found opcode sequences
FS (determined empirically).

3.2 Signature generation
Our signatures are formed by taking into account the type

of obfuscation that can affect opcode sequences; these in-
clude both junk code insertion and code reordering. Junk
code insertion is an obfuscation technique which embeds
pools of instructions that never execute at run time, such
as instructions in an artificial if-else branch that never
triggers. Code reordering permutes instructions that have
no ordering dependencies; the main point is to subvert hash-
based detection schemes.

The next step of the process is to normalize the extracted
opcodes in each sequence f. This distorts the order of opcode
arrangement and groups similar opcodes in the same cluster.
Next, for each normalized opcode sequence, we generate sub-
sequences of n-gram opcodes. In choosing the best value for
n, we run our system with uni-gram, 2-gram and 3-gram.
Empirical results (as shown in section 4) indicate that 2-
gram gives the best accuracy. From now on, we refer to each
sequence (representing one function) containing k number of
2-gram opcodes as pattern P.

S = {P 1, P 2, . . . , Pm} (1)

where each

Pm = {osm1 , osm2 , . . . , osmi } (2)

Depending on number of sensitive functions found, a sig-
nature for known profile S is a set of m patterns P, where
each pattern is a set of i 2-gram opcodes denoted as os. This
forms the structural features for the familial malware.

Our technique allows similarity to be measured from the
basic unit of code upwards. Similarity between apps be-
comes an aggregate of individual functional similarities and
as such the likelihood of determining relationships between
two related codes increases.

We know that malware variants will not be exact copies
of one another, but our assumption is that most of their
malicious functionality and code structure remains similar.
Malware can add, remove or substitute code within a func-
tion. However, for it to retain vital key behaviors, some
part of the code has to be consistent across variants. Thus
by carefully analyzing each function as a single unit and nor-
malizing its opcodes, our algorithm can ascertain whether a
relationship exists between two functions of different appli-
cations.

3.3 Similarity Matching
Our similarity matching is a 3-step process that begins

with Pattern-level similarity, then Function-level similarity
to determine a score for all the matched functions. Lastly,
the Final-similarity index scores similarity as a function of
the Function-level similarity and permissions overlap.
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Figure 1: OpSeq Signature Generation Workflow

3.3.1 Pattern-level similarity
Given a reference piece of malware A with signature SA

and sample application B with signature SB :

SA ={P 1,P 2,. . . ,Pm}
Pm={osm1 ,osm2 ,. . . ,osmi }
SB ={P 1,P 2,. . . ,Pn}
Pn ={osn1 ,osn2 ,. . . ,osnj }

(3)

For each Pm in SA , we determine its best match in SB

using the Targeted Overlap Coefficient (TOC ) tech-
nique[16]. TOC is derived from the Overlap Coefficient or
Szymkiewicz-Simpson coefficient, which is defined as the ra-
tio of the size of the intersection of two sets to the size of a
target set.

In pattern-level similarity, the TOC measures the ratio
of common 2-gram opcodes found in the intersection of Pn

and Pm to the size of Pm, given Pm as the target set. The
result indicates the power of inclusion of Pm in Pn. The
TOC, denoted by R(Pn, Pm) is:

R(Pm, Pn) = |Pn ∩ Pm|/|Pm| (4)

Since our algorithm specifically leverages finding the re-
lationship between a new pattern and a known target pat-
tern, the TOC is our preferred similarity metric. To deter-
mine how Pm relates to Pn, we require a threshold value T
defined as the pattern-level threshold (PLT). This denotes
the minimum acceptable similarity ratio. In this step, If R
(Pm, Pn) ≥ T then we write R to a buffer BUF and we
eliminate both Pm and Pn. While if R (Pm, Pn) < T then
Pm is eliminated while Pn remains. This loop continues
until all the patterns in SA are compared to patterns in SB

(Algorithm 1).
The pattern-level similarity is measured by the value of

R, which lies between 0 and 1. As R approaches 1, it means
most 2-gram opcodes found in Pm are also present in Pn,
hence Pm is similar to Pn. However as R approaches 0, the
similarity between Pm and Pn diminishes. The similarity

score calculated is not transitive–Pm is a pattern from our
known profiles while Pn is a pattern in a test sample and
the idea is to calculate how close Pm is to Pn and not vice
versa. A positive outcome at this level of matching can
be attributed to one of the following reasons. If Pm and
Pn are modules with the same functionality then R will be
close to 1. It is also possible Pn is a disguised version of Pm

that has been obfuscated but still retains most of its original
opcodes. In this situation, we can also derive a match. It
is also possible for Pm and Pn to match to a certain degree
even though neither is derived from same functional module,
which will create a false positive. Our evaluation results have
shown this is quite rare in practice.

This pattern level-matching algorithm has proven effective
in overcoming the effect of junk insertion and reordering
obfuscation techniques.

3.3.2 Function-level similarity
This step analyzes all the results generated in pattern-

level matching. As shown above, for each matched pattern,
the derived coefficient is stored in a buffer BUF.

BUF = {R1, R2, . . . , Rk} (5)

The set of ratios represents all the matched functions be-
tween SA and SB . Function-level matching calculates a
score between two samples as an aggregate of their pattern-
level matching. As preliminary testing, we tried 4 different
similarity coefficients (Cosine, Jaccard, Edit Distance and
Sorensen (Dice) Coefficient) on sample sets and measured
the results. The Dice Coefficient gave us the best result.
Briefly, the Dice coefficient is a measure of the intersection
between two given sets scaled by their size. Although the
choice of Dice Coefficient is basically empirical, in general
it gives more weight when there is an intersection than the
Jaccard, thus strengthening similarity. The Dice Coefficient
D is defined as follows:

D(SA, SB) = 2* |SA ∩ Sb|/|SA + SB | (6)

A value of T (pattern-level threshold) that is close to 1



means each R in BUF is also close to 1. Thus:

|SA ∩ SB | =
∑

BUF (7)

And therefore:

D = 2*(
∑

BUF ) / |SA + SB | (8)

The coefficient D (Algorithm 2) denotes structural similarity
between extracted functions found in two applications.

3.3.3 Final-similarity index
The final similarity score is calculated based on the result

of function-level matching and permissions overlap. We first
need to calculate the permissions overlap using the Targeted
Overlap Coefficient:

permA = permission list in A

permB = permission list in B
(9)

Thus the permission overlap from A to B, called PO, is
given as:

PO (A,B) = |permA ∩ PermB|/|permA| (10)

This gives the ratio of similar permissions found in A and B
against the length of set of permissions for A . The permis-
sions overlap is a weight that strengthens the result of the
function-level matching and indicates (at a coarse-grained
level) what behavior is common between A and B . If two
apps contain the same malware footprint, they normally
should have some common permissions. The overlap co-
efficient is a value between 0 and 1.

The final similarity index given as SS and is a function
of function-level similarity D and permissions overlap PO.
This is defined as:

SS = D * PO (11)

The value of SS is a coefficient that indicates the strength
of similarity between two applications based on our extracted
features. A minimum similarity index MSI is required to de-
termine if the coefficient SS is good enough. Thus when SS
≥ MSI, we report that a known footprint for malicious code
is present in the target app.

Algorithm 1 Pattern-Level Matching

function :(PLM(SA, SB , T))
for Pm in SA do:

for Pn in SB do
inter=multi intersect(Pm, Pn)
coef = len(inter) / len(Pm)
if coef ≥ T then:

append(coef, BUF)
remove(Pn, SB)

end if
end for

end for
return BUF

end function

The summary of all the design notation is shown in Table
1.

4. EVALUATION

Algorithm 2 Function-Level Matching - Dice coefficient

function :(FLM(SA, SB , BUF))
suM=sum(BUF)
funAvg= 2/ (len(SA)+len(SB)
D = funcAvg * suM
return D

end function

Algorithm 3 Final-Similarity Index

function :(FSI(permA, permB , D))
inter= multi intersect (permA, permB)
perm = inter/len(permA)
if perm > 0 then

SS=perm*D
end if
return SS

end function

We have implemented a prototype of OpSeq in Python to
test its efficacy on obfuscation techniques typically employed
by Android malware. This section presents our empirical
results.

4.1 Focus of the Evaluation
The focus of the evaluation is twofold: 1) detection of

known malware, and 2) further categorization of detected
malware into their respective malware families. In particu-
lar, the evaluation targets the following two research ques-
tions:

1. Malware/Benign apps detection (Mal/Ben):
Can OpSeq accurately detect a variant of repackaged
malicious code without confusion with benign applica-
tions?

• True Positive (TP): known malware code is cor-
rectly detected.

• False Positive (FP): benign code wrongly detected
as containing malware code.

• True Negative (TN): benign apps are not flagged
as having malware code.

• False Negative (FN): known malware code is not
detected.

2. Malware class detection (Mal/Class):
Can OpSeq categorize a known repackaged malware
code into its respective family?

• True Positive (TP): all malware code that are cor-
rectly categorized.

• False Positive (FP): all malware code that are
wrongly categorized as variants of different fami-
lies.

• False Negative (FN): all malware code that were
not detected.

• True Negative (TN): true negative is eliminated in
this test because all the malware samples belong
to at least one known class. The samples used in
this test were derived from the true positives in
Mal/Ben above.



Table 1: Design Notation Table

Notation Definition
cd classes.dex
jc Java Class
f Java Function
o Instruction Opcode
S Signature
P Pattern from a Signature
TOC −R(Pm, Pn) Targeted Overlap
BUF Set of Targeted Overlap Coefficients
T Threshold
D(SA, SB) Dice Cofficient
PermA Permission List from Sample A
P.O(A,B) Targeted Permission Overlap
SS Final Similarity Index
MSI Minimum Similarity Index
PLT Pattern Level Threshold

Table 2: Malware sample distibution as per four
obfuscation techniques: reflection, encryption, code
reordering, and junk insertion

Obfuscation Obfuscation Number of
Type Techniques Malware Samples

DroidChameleon
Encryption (E) 24

Simple Reflection (R) 25
Obfuscation Reordering (O) 24

Junk (J) 24
E & R 23

Complex E & R & O 24
Obfuscation E & R & J 23

SandMark
Transparent Branches 20
Random DeadCode 20

Total 207

4.2 Dataset
We use two datasets for experiments. The first dataset has

1,551 Android applications consisting of 359 benign applica-
tions downloaded from Google Play, and 1,192 malware sam-
ples (of 25 families) from the well-known Android Genome
project [23]. The second dataset has 207 malware samples
employing four obfuscation techniques: reflection, encryp-
tion, code reordering and junk insertion. DroidChameleon
[13], and SandMark [11] are used to generate the samples.
Specifically, malware sample distribution of DroidChameleon
and SandMark are 167 variants (of 25 malware classes), and
40 variants (of 20 malware classes) respectively. If only one
obfuscation technique is used by a malware, we refer it as
simple obfuscation, otherwise, it is referred as complex ob-
fuscation. Table 2 presents the distribution of malware in
the dataset in accordance with obfuscation tool and type.

4.3 Optimum Variables
As mentioned in the previous section, we chose to slice our

normalized sequences using 2-gram sub-sequences, based on
results from empirical studies. The average accuracy of our
approach tested with unigram, 2-gram and 3-gram was 91%,
98.9% and 96% respectively. More so, we have identified

two variables necessary for our algorithm: 1) Pattern-level
threshold (PLT) - the minimum overlap ratio required to
assume similarity between two 2-gram patterns from dif-
ferent apps (in Pattern-level similarity), and 2) Minimum
similarity index (MSI) - the minimum score that determines
if a malware footprint is present in an application (in Final-
similarity index). To get the optimal values of PLT and
MSI, we choose arbitrary values and plugged them into our
algorithm. The chosen values for PLT are 70, 80 and 90,
all expressed as a percentage. MSI values are 3, 4, 5, 6, 7,
again expressed as a percentage. Our variables are chosen
based on the statistics of Mal/Ben detection.

In choosing the optimal values, we use F-Score statistics.
The F-Score measures the overall accuracy of a test, which
depends on precision and recall. Recall is the measure of
accuracy that a specific class has been detected (% of cor-
rect malware families detected out of all malware samples),
whereas precision is the percentage of positive prediction (%
of all malware detected out of all sample applications).

The combination of PLT and MSI that gives the highest
F-score is the optimal solution for the test data. We ran
OpSeq on our dataset using the above combination of PLT
and MSI and the results of our execution is shown in Table
3. Each row (a model) represents one combination. We
then calculate the statistics (false positive, false negative,
true positive, true negative, precision, recall and F-score)
for each model. The equation for F-Score statistics is:

F = 2 * ((Precision * Recall)/(Precision + Recall)) (12)

The results in Table 3 above indicate the highest F-Score
is attained with PLT equal to 80% and MSI equal to 3%.
This model gives us 99.3% precision, 98.5% recalls and an
F-Score of 98.9% for Mal/Ben detection. Furthermore, the
false negative rate (given as FN/TP+FN) for this model
was ≈1.5%. This indicates our system has a very small
probability of “miss” detection for known malicious code.
The false positive rate for the same model is ≈2.2%.

Using the same metrics on Mal/Class, our F-Score accu-
racy was 97.5%, 98% recall and 97% precision. Thus over-
all, our system is capable of accurately detecting malware
98.9% of the time and can categorize the malware into its
correct family with 97.5% accuracy. The confusion matrix
for Mal/Ben and Mal/Class based on the optimal values is
shown in Table 4 and Table 5, respectively.

The rationale for choosing our optimal values is to further
buttress the precision/recall curve of our solution as shown
in Figure 2. With each point representing one model, the
points on the curve where precision and recall are around
their maximum and are nearly equal indicate the point of
maximum accuracy (interpolated precision is used to smooth
the PR curve).

4.4 Empirical Results
Accuracy: Given the F-Score for Mal/Ben, our system

can detect malware footprints in an app with 98.9% accu-
racy. However due to some reasons identified below, the
Mal/Class test (i.e., identifying the class category) is slightly
lower (97.5%). In comparison with some recent known mal-
ware detection tools, OpSeq ’s Mal/Class accuracy (97.5%)
did better than Apposcopy [7] with 90% accuracy. On the
other hand DroidLegacy [4] recorded a membership test ac-
curacy of 98%, slightly higher than OpSeq ’s Mal/Class figure
of 97.5%.



Figure 2: Precision & Recall Curve

Table 3: Model Selection Result: F-Score, Precision, Recall

Model False False True True Precision Recall Interpolated F-Score
Positive Negative Positive Negative Precision

T 90M 7 0 68 1124 359 1 0.943 1 0.971
T 90M 6 1 63 1129 358 0.999 0.947 1 0.973
T 80M 7 0 63 1129 359 1 0.947 1 0.973
T 90M 5 2 55 1137 357 0.998 0.954 0.998 0.976
T 80M 6 2 54 1138 357 0.998 0.955 0.998 0.976
T 90M 4 2 44 1148 357 0.998 0.963 0.998 0.98
T 80M 5 2 42 1150 357 0.998 0.965 0.998 0.981
T 70M 6 25 31 1161 334 0.98 0.97 0.997 0.983
T 70M 7 10 35 1157 349 0.99 0.97 0.997 0.983
T 80M 4 5 34 1158 354 0.996 0.971 0.997 0.984
T 90M 3 4 34 1158 355 0.997 0.971 0.997 0.984
T 70M 4 108 22 1170 251 0.92 0.98 0.993 0.986
T 70M 5 52 27 1165 307 0.96 0.98 0.993 0.986
T 80M 3 8 18 1174 351 0.993 0.985 0.993 0.989
T 70M 3 192 15 1177 167 0.86 0.987 0.971 0.979

However, comparing DroidLegacy’s recall rate of 94%,
which is the true positive rate, versus our figure of 98%,
indicates our system is capable of better detection. Further-
more, our system has better coverage in terms of malware
families processed (they processed 11 families against ours
with 25 families) and resiliency to different obfuscators as
shown in the next subsection.

False Negative: Eighteen (18) malware were incorrectly
categorize as benign apps. Samples from DroidKungFu,
DroidDreamLight and Anserverbot constitute the bulk of
our false negative predictions as shown in Table 5. One rea-
son for the false negatives can be traced to our signature
generation process. This process randomly picks only one
sample from a set to create a class signature; it is possi-
ble that the sample might be the oldest, newest or even a
variant that has more inclusion or exclusion of instructions

within the malicious code. For instance, the sample we use
to generate the signature for DroidDreamLight is a newer
version than the rest of its variants. This sample has about
98 functions that were extracted for the signature against 18
for the older version. Thus, since our similarity calculates
overlap based on the target known profile, this sample was
a miss.

Another reason for some false negatives can be attributed
to native code exploits. Malware samples that have most of
their malicious code written in native code will often result
in a miss detection (e.g., some few variants of DroidKungFu
and Anserverbot). Currently, OpSeq is only designed to
handle the dex file (containing Java bytecode) and handling
native code is the subject of ongoing research.

False Positives: For Mal/Ben, 8 applications out of 359
downloaded from Google Play were detected as malware by



Table 4: Mal/Ben Best Model Confusion Matrix

(Positive) (Negative)
Malware Benign Total

(Positive)
Malware 1174 8 1182
(Negative)
Benign 18 351 369
Total 1192 359

Table 5: Percentage of Mal/Class Prediction Result

Malware False False True Total

Family Negative Positive Positive

ADRD 0 0 22 22
Anserverbot 7 12 286 305
BeanBot 0 0 8 8
Bgserv 0 0 9 9
CruseWin 0 0 2 2
DroidDream 1 1 14 16
DroidDreamLight 4 0 43 47
DroidKungFu 5 19 418 442
Geinimi 0 0 69 69
GingerMaster 0 0 4 4
GoldDream 0 0 47 47
Gone60 0 0 9 9
GPSSMSSpy 0 0 6 6
HippoSMS 0 0 4 4
jSMSHider 0 0 13 13
KMin 0 0 52 52
Pjapps 1 2 55 58
Plankton 0 1 10 11
RogueLemon 0 0 2 2
RogueSPPush 0 0 9 9
SndApps 0 0 10 10
Tapsnake 0 0 2 2
YZHC 0 0 22 22
zHash 0 0 11 11
Zsone 0 0 12 12
Total 18 35 1139 1192

OpSeq , as shown in Table 4. In order to confirm the true
nature of these 8 applications, we ran them through Virus-
Total [1]. The output flagged 3 out the 8 apps as malware,
reducing our true false positives to only 5 apps.

In Mal/Class, the false positives recorded were largely due
to the use of common code snippets. This code ranges from
3rd party libraries to adware. Most of the malware families
originate from the same location and have common targets,
so it is not uncommon to find similar libraries and/or adware
packaged within the applications. For instance, we analyzed
one of the Anserverbot samples which OpSeq miscategorized
as DroidKungFu and it contains the Adware.waps, while the
sample used to generate the signature for the Anserverbot
family does not. However, the adware on its own collects
various user data from a device and invokes some sensitive
APIs, like getRunningTask. Thus our system retrieved more
features than were available for its family’ s signature. On
the other hand, the DroidKungFu sample for signature gen-
eration contains the same adware. Since OpSeq assigned the

malware class based on the strength of the final similarity in-
dex, that Anserverbot sample was flagged as DroidKungFu.

4.5 Evaluating Resiliency
Our approach can detect known malicious code obfuscated

and repackaged within another app. In order to measure its
resiliency, we employ two different open source obfuscators:
DroidChameleon - a newer system specifically designed to
obfuscate Android apps, and SandMark - a well known Java
obfuscator. In both systems, we gave special emphasis to
those modules/algorithms that can severely hinder opcode-
sequence-based detection.

4.5.1 Test against DroidChameleon
Using DroidChameleon, we generated 167 obfuscated vari-

ants of the malware in our sample set with varying degrees
of transformations, ranging from simple (one method) to
complex (combination of obfuscators). In this segment of
our evaluation we choose 4 common obfuscation techniques
employed by Android malware:

1. Encryption: names, strings and field encryption

2. Reflection: permission based API calls are changed
from direct invocation to using reflection API in helper
classes

3. Junk Insertion: addition of “noise” instructions

4. Code Reordering: altering the flow of program execu-
tion by changing the positions of unrelated instructions

In simple obfuscation, an application is transformed with
just one technique, e.g., getDeviceId is transformed from a
direct call to invoking a helper class that calls class.getMethod()
and then method.invoke(). In complex obfuscations, appli-
cations get obfuscated with two or three techniques, e.g.,
all strings, fields and names are encrypted and then all
permission-based API calls are invoked using a reflection
API.

For simple obfuscation, we introduced encryption into 24
samples, 25 samples had added reflection, junk instructions
were added in 24 samples, and code reordering in 24 samples.
For complex obfuscation our samples were transformed with
a minimum of two different techniques. We modified Droid-
Chameleon such that when an app is unpackaged, it is first
encrypted, then the bytecode is run through more obfusca-
tor modules before repackaging. We successfully repackaged
23 samples with encryption and reflection, 24 had (encryp-
tion, reflection and reordering) combined and finally 23 had
(encryption, reflection and junk) combined. Our results for
simple and complex obfuscation as shown in Table 6 and
Table 7, respectively. OpSeq scores 100% average detection
rate in simple obfuscation and 88% for complex transforma-
tions.

4.5.2 AntiVirus Results
Using the same obfuscated samples mentioned above, we

assessed the detection ratio of other antivirus products using
the VirusTotal website. For simple obfuscation, out of the
top 14 antivirus products, AVG recorded the highest detec-
tion rate with average detection of 65.83%, followed by Dr.
Web, F-Secure, Kaspersky, AhnLab-V3 with slightly above
50%, and Panda, with the lowest detection rate of 4%. In the
complex obfuscation cases, AhnLab-V3 led other antivirus



Table 6: Evaluation results for DroidChameleon’s simple obfuscation.

Encryption Reflection Reordering Junk Average
Detection Rate

Total No. of Sample 24 25 24 24
Research Tools

OpSeq 24 25 24 24 100
DroidLegacy 6 0 15 15 37.5
AntiVirus Software

AVG 8 20 18 18 65.98
DrWeb 17 5 17 17 57.73
F-Secure 6 16 17 16 56.7
Kaspersky 6 16 16 15 54.64
AhnLab-V3 14 14 10 12 51.55
Avast 6 15 13 14 49.48
Avira 5 7 12 12 37.11
Symantec 4 12 7 11 35.05
Ad-Aware 6 6 7 7 26.8
BitDefender 6 6 7 7 26.8
AVware 5 6 6 6 23.71
McAfee 5 5 5 5 20.62
Panda 2 2 2 2 8.25
Baidu-International 1 1 1 1 4.12

Table 7: Evaluation results for DroidChameleon’s complex obfuscation.

Encryption & Encryption Encryption Average
Reflection Reflection & Reflection & Detection Rate

Reordering Junk
Total No. of Sample 23 24 23
Research Tools

OpSeq 23 24 15 88.57
DroidLegacy 0 0 0 0
AntiVirus Software

AhnLab-V3 12 13 12 49.33
AVG 6 7 6 27.14
Kaspersky 6 6 4 22.86
Ad-Aware 6 7 3 22.86
BitDefender 6 7 3 22.86
F-Secure 6 7 3 21.33
Avast 6 6 3 21.43
Avira 5 5 3 18.57
AVware 5 5 3 18.57
DrWeb 5 5 3 18.57
McAfee 5 5 3 18.57
Symantec 4 4 2 14.29
Panda 2 1 2 7.14
Baidu-International 1 2 2 7.14



products with a detection rate of 49.33%, then AVG with
27%. All the rest recorded less than 25%.

4.5.3 DroidLegacy Results
We also used the same obfuscated variants described above

to evaluate the performance of DroidLegacy. We set the op-
timum threshold of 0.7 as specified in their paper. For sim-
ple obfuscation, DroidLegacy had an average detection rate
of 37% and 0% for complex obfuscation. Like many com-
mon malware detection tools, DroidLegacy depends on API
names to create signatures for malware. In situations where
the name is obfuscated using reflection, chances of detec-
tion become very low. This explains why it recorded 0% for
all apps that were repackaged using reflective method invo-
cation. Furthermore, it performed poorly with encryption
alone, detecting only 6 out of 24 encrypted apps.

4.5.4 Tests against Sandmark
To further evaluate the resilience of OpSeq against ma-

jor obfuscation techniques, we tested it against SandMark.
SandMark is well known and highly documented tool used
for watermarking, tamper-proofing and code obfuscation of
Java bytecode [11]. For the purpose of our analysis, we
used only some specific modules within Obfuscation Exec-
utive to transform the application bytecode. We generated
40 new variants by inserting Transparent Branches and Ran-
dom DeadCode. The resulting new jar files were repackaged,
aligned and signed before analysis.

In this experiment, we tested OpSeq ’s similarity detection
capability by performing a one to one comparison between
each of the 40 repackaged malware and its original sample.
The results indicates OpSeq can detect these obfuscations
with 100% accuracy.

4.6 Measure of Performance
Our experimental system an Ubuntu Linux 64-bit system

running on an Intel Xeon CPU at 2.5 GHz, with 16 GB
RAM. We leverage an open source Android reverse engi-
neering tool called apktool for the conversion of the Android
dex file into an intermediate bytecode representation, called
smali. Given a target application with 205 Java functions
(28624 lines of Dalvik bytecode), for which 46 of these func-
tions invokes one or more of the sensitive APIs, it takes an
average of 4.5 seconds on our test machine to perform a
one-to-one similarity matching with a known sample that
has 118 Java methods (19307 lines of Dalvik instructions).

Furthermore, for detection purposes, it takes an average of
11.6 seconds to analyze the same target app against known
profiles of the 25 malware families (classification). This re-
sults outperforms Apposcopy, which took an average of 346
seconds per analysis of an app with 26786 lines of Dalvik
bytecode.

The fact that OpSeq is designed to fingerprint apps based
on small structured signatures extracted from vital points
within the program code base helps to eliminate unneces-
sary noise in the matching process and thus improves our
system’s overall performance.

5. DISCUSSION
The experiments in the previous section illustrate that for

a large class of Android malware, OpSeq significantly out-
performs state of the art commercial and research products
that rely on signature-based detection algorithms. Our tests

indicate that OpSeq is effective in detecting malware in the
presence of both simple and complex obfuscation techniques,
many of which compromise the accuracy of existing detec-
tion techniques.

In the malware families we analyzed, the largest stored
signature has 118 patterns (slices) to be matched while the
smallest has 3 patterns. Theoretically, if we compare OpSeq
with other opcode-sequence based detection like [22, 10]
which slice the entire app’s opcode-sequence into n slices,
our app’s signature sizes are guaranteed to be smaller and
therefore much more efficient. Furthermore, our average
processing time of 11.6 seconds per 25 family comparison
indicates our algorithm is fairly scalable.

During the course of our analysis, our findings indicate
extensive code reuse amongst some of the malware families.
For instance, Zhou et al has categorized DroidKungFu into 5
major families [23]. However we found malware from these
classes to contain a considerable amount of common code
segments. Thus we categorize them as one class.

Also, Anserverbot and Basebridge have been found to
contain a similar main package com.keji.danti. They differ
slightly where BaseBridge loads an extra payload that leads
to privilege escalation while some Anserverbot variants do
not. But since OpSeq only processes the dex file, our anal-
yses flag one as a variant of the other. Information from
Foresafe encyclopedia [2] and analysis results of some an-
tivirus products in VirusTotal also affirm their relationship,
hence we merge them into one class. Some common adware
and external libraries were also found to be present in mal-
ware of different families. Such instances have increased the
rate of our false positives and affect the overall accuracy for
Mal Class detection, but these issues also raise indicate that
OpSeq has significant value in better malware classification
as well as detection.

6. LIMITATIONS
Like most malware detection schemes based on static anal-

ysis, OpSeq can be thwarted via whole class encryption and
extensive dynamic class loading. This is because OpSeq only
extracts features from the available classes.dex file. Extra
classes that are fully encrypted or loaded at runtime cannot
be processed. Furthermore, OpSeq is designed to process
only the Dalvik instructions and as such cannot handle na-
tive code. However as part of our proposed future work,
we aim to extend our system to use similar techniques to
parse and create signatures from the native code’s assembly
instructions.

Code-reordering that can split functions into multiple sub-
functions may also negatively impact our approach. Also,
very large numbers of junk instructions can introduce so
much noise that it may affect the quality of our signatures.
However these obfuscation techniques will only be problem-
atic when more than one sensitive functional module is tam-
pered with, which in practice will require significant human
intervention. Furthermore, since our approach clusters com-
mon opcodes together by normalizing them before we slice
the whole sequence into 2-gram patterns, excessive noise can
only affect our signature when unique opcodes are intro-
duced viz-a-viz the normalization pattern. These unique
opcodes must vary significantly from those normally used
within the functions.

7. CONCLUSIONS



In this paper, we developed a new, resilient approach for
statically detecting Android malware variants. Our system
generates signatures for known malicious code as a function
of the normalized opcode sequence found in sensitive func-
tional modules and the permissions an app requests. Mal-
ware belonging to the same family often reuses considerable
portions of their codebase and possesses common behav-
ioral characteristics. Permissions requested by an applica-
tion gives a hint of what the resulting behavior might likely
be. Thus the combination of these two distinctive features
creates a unique and robust signature for known malware.

The result of our analyses illustrated that we can correctly
detect and categorize malware variants with an F-measure
of 98.9% and our system is resilient to even complex obfus-
cation schemes, such as reflection, name and string encryp-
tion, junk code insertion, and code reordering when com-
pared to the current state of the art in Android malware
detection tools, including both commercial antivirus and re-
search tools.
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